A stochastic analysis of steady state two-phase flow in heterogeneous media

نویسندگان

  • Mingjie Chen
  • Dongxiao Zhang
  • Arturo A. Keller
  • Zhiming Lu
چکیده

[1] We present a novel approach to modeling stochastic multiphase flow problems, for example, nonaqueous phase liquid flow, in a heterogeneous subsurface medium with random soil properties, in particular, with randomly heterogeneous intrinsic permeability and soil pore size distribution. A stochastic numerical model for steady state water-oil flow in a random soil property field is developed using the Karhunen-Loeve moment equation (KLME) approach and is numerically implemented. An exponential model is adopted to define the constitutive relationship between phase relative permeability and capillary pressure. The log-transformed intrinsic permeability Y(x) and soil pore size distribution b(x) are assumed to be Gaussian random functions with a separable exponential covariance function. The perturbation part of these two log-transformed soil properties is then decomposed into an infinite series based on a set of orthogonal normal random variables {xn}. The phase pressure, capillary pressure, and phase mobility are decomposed by polynomial expansions and the perturbation method. Combining these expansions of Y(x), b(x) and dependent pressures, the steady state water-oil flow equations and corresponding boundary conditions are reformulated as a series of differential equations up to second order. These differential equations are solved numerically, and the solutions are directly used to construct moments of phase pressure and capillary pressure. We demonstrate the validity of the proposed KLME model by favorably comparing firstand second-order approximations to Monte Carlo simulations. The significant computational efficiency of the KLME approach over Monte Carlo simulation is also illustrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Thermal Dispersion Effects for Single and two Phase Analysis of Heat Transfer in Porous Media

The present work involves numerical simulation of a steady, incompressible forcedconvection fluid flow through a matrix of porous media between two parallel plates at constanttemperature. A Darcy model for the momentum equation was employed. The mathematical model forenergy transport was based on single phase equation model which assumes local thermal equilibriumbetween fluid and solid phases. ...

متن کامل

Flow in unsaturated random porous media, nonlinear numerical analysis and comparison to analytical stochastic models

This work presents a rigorous numerical validation of analytical stochastic models of steady state unsaturated flow in heterogeneous porous media. It also provides a crucial link between stochastic theory based on simplifying assumptions and empirical field and simulation evidence of variably saturated flow in actual or realistic hypothetical heterogeneous porous media. Statistical properties o...

متن کامل

Subcooled two-phase flow boiling in a microchannel heat sink: comparison of conventional numerical models

Subcooled flow boiling in multi-microchannels can be used as an efficient thermal management approach in compact electrical devices. Highly subcooled flow boiling of HFE 7100 is studied in two microchannel heat sinks to choose a proper numerical model for simulating boiling flows in microchannels. Results of five different numerical models, including Volume of Fluid (VOF), Eulerian boiling, Eul...

متن کامل

Pseudo Steady State Gas Flow in Tight Reservoir under Dual Mechanism Flow

Gas reservoirs with low permeability (k<0.1 mD) are among the unconventional reservoirs and are commonly termed as "Tight Gas Reservoirs". In conventional gas reservoirs that have high permeability, the flow of gas is basically controlled by the reservoir permeability and it is calculated using the Darcy equation. In these reservoirs, gas flow due to gas diffusion is ignored compared to Dar...

متن کامل

Dynamic Model For Production of Biohydrogen Via Water- Gas Shift Reaction (RESEARCH NOTE)

In design of anaerobic bioreactor, rate equation is commonly used. Mathematical model was developed at steady state condition, to project concentration of gaseous substrate and product in biological oxidation of carbon monoxide with water to produce hydrogen and carbon dioxide. The concept of bioconversion was based on transport of CO from gas phase to liquid phase, as the CO consumption was in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005